Weighted completion of Galois groups and Galois actions on the fundamental group

نویسنده

  • MAKOTO MATSUMOTO
چکیده

Fix a prime number l. In this paper we prove a conjecture [16, p. 300], which Ihara attributes to Deligne, about the action of the absolute Galois group on the pro-l completion of the fundamental group of the thrice punctured projective line. It is stated below. Similar techniques are also used to prove part of a conjecture of Goncharov [11, Conj. 2.1], also about the action of the absolute Galois group on the fundamental group of the thrice punctured projective line, and which derives from the conjectures of Deligne and Ihara and questions of Drinfeld [7, p. 859]. Ihara’s version of Deligne’s conjecture concerns the outer action φl : GQ → Outπ1(P (C)− {0, 1,∞}, x) (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation of Outer Representations of Galois Group II

This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...

متن کامل

Deformation of Outer Representations of Galois Group

To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...

متن کامل

Weighted Completion of Galois Groups and Some Conjectures of Deligne

Fix a prime number l. In this paper we prove l-adic versions of two related conjectures of Deligne, [4, 8.2, p. 163] and [4, 8.9.5, p. 168], concerning mixed Tate motives over the punctured spectrum of the ring of integers of a number field. We also prove a conjecture [11, p. 300], which Ihara attributes to Deligne, about the action of the absolute Galois group on the pro-l completion of the fu...

متن کامل

ALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS

Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...

متن کامل

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008